ГлавнаяГотовые работы Численное моделирование колебания цилиндрического объема жидкости под действием сил поверхностного натяжения комплексным методом граничных элементов

Готовая работа

на тему:

«Численное моделирование колебания цилиндрического объема жидкости под действием сил поверхностного натяжения комплексным методом граничных элементов»









Цена: 400 руб.

Номер: V4859

Предмет: Моделирование систем и процессов

Год: 2008

Тип: разное

Отзывы

Айжамал 26.08.2020
Вас беспокоит автор статьи Айжамал из Кыргызстана,  моя статья опубликована, и в этом ваша заслуга. Огромная благодарность Вам за оказанные услуги.
Татьяна М. 12.06.2020
Спасибо Вам за сотрудничество! Я ВКР защитила на 5 (пять). Огромное спасибо Вам и Вашей команде Курсовой проект.
Юлианна В. 09.04.2018
Мы стали Магистрами)))
Николай А. 01.03.2018
Мария,добрый день! Спасибо большое. Защитился на 4!всего доброго
Инна М. 14.03.2018
Добрый день,хочу выразить слова благодарности Вашей и организации и тайному исполнителю моей работы.Я сегодня защитилась на 4!!!! Отзыв на сайт обязательно прикреплю,друзьям и знакомым  буду Вас рекомендовать. Успехов Вам!!!
Ольга С. 09.02.2018
Курсовая на "5"! Спасибо огромное!!!
После новогодних праздников буду снова Вам писать, заказывать дипломную работу.
Ксения 16.01.2018
Спасибо большое!!! Очень приятно с Вами сотрудничать!
Ольга 14.01.2018
Светлана, добрый день! Хочу сказать Вам и Вашим сотрудникам огромное спасибо за курсовую работу!!! оценили на \5\!))
Буду еще к Вам обращаться!!
СПАСИБО!!!
Вера 07.03.18
Защита прошла на отлично. Спасибо большое :)
Яна 06.10.2017
Большое спасибо Вам и автору!!! Это именно то, что нужно!!!!!
Спасибо, что ВЫ есть!!!

Поделиться

Введение
Содержание
Литература
Введение



Магистерская диссертация посвящена решению фундаментальной задачи о течениях идеальной несжимаемой жидкости со свободной поверхностью в плоской постановке. В качестве инструмента исследования применяется комплексный метод граничных элементов.

Детальное изучение поведения жидкостей в капельном состоянии имеет важное научное и практическое значение и интересует исследователей на протяжении вот уже более полутора сотен лет. В первую очередь потому, что жидкости в капельном состоянии встречаются во многих природных и технологических процессах (распыление аэрозолей, нанесение покрытий методом напыления, взаимодействие поверхностей радаров с влагой дождевых облаков, клеточное деление в биологических системах, непрямое измерение реологических параметров жидкостей и др.).

В настоящей работе представлено численное моделирование процесса колебаний капли невязкой жидкости в плоском приближении. Малые колебания идеальной капли жидкости впервые были рассмотрены Рэлеем [14] который определил период колебаний такой капли при значительных упрощениях. В настоящее время известно множество работ, посвященных анализу указанного процесса [23]. Однако до сих пор исследователям не удалось ни смоделировать распад капли под действием поверхностного натяжения (т.е. собственной деформации), ни определить, какие значения деформаций являются критическими для капель, приводящими их к распаду. Налицо высокая актуальность и ярко выраженный фундаментальный характер задач подобного рода. В настоящее время существует множество работ, как зарубежных, так и российских, в которых решаются задачи такого характера [8, 23]. Для их решения довольно часто применяются численные методы, использующие дискретное представление границы области решения, не требующие подробного описания внутренней части области. Это метод граничных элементов (МГЭ) [5, 6], комплексный метод граничных элементов (КМГЭ) [9] и другие. В представленной работе используется КМГЭ.

Существенным, для этого метода является использование интеграла Коши [10, 15], на основе которого построен метод граничных интегральных уравнений. Данная формула связывает значение функции, в некоторой внутренней точке области на комплексной плоскости, с интегралом от функции по границе этой области. То есть значения функции в области, где она аналитична, полностью определяются значениями на границе.

Наиболее важными и полезными в приложениях оказываются следующие свойства КМГЭ:

1. Аппроксимирующие функции метода являются аналитическими и точно удовлетворяют двумерному уравнению Лапласа в области, содержащейся внутри кривой, на которой решается задача; при этом погрешность допускается только на границе.

2. Вычисление граничных интегралов вдоль каждого граничного элемента осуществляется точно, без привлечения процедур численного интегрирования.

3. Предельно высокая точность КМГЭ позволяет использовать его для тестирования и калибровки, отличных от него численных моделей, основанных на идее аппроксимации.

Применимость этого метода охватывает широкий круг задач, таких как течение идеальной жидкости, течение в пористых средах, задачи диффузии, теплообмен, задачи теории упругости, задачи вычислительной механики и гидравлики. Однако, для решения именно этой задачи КМГЭ применяется впервые. Работы, использующие этот метод: [1, 15,17, 19 – 22, 24, 25]

Алгоритмизация проводилась на языке программирования Fortran, с использованием подпрограмм библиотеки IMSL [2 – 4]. Тексты программ помещены в приложении.



Целью работы является решение задачи о колебании цилиндрического объёма идеальной жидкости под действием сил поверхностного натяжения в плоской постановке.

Для её успешной реализации, так же необходимо рассмотреть теоретические основы метода для H0, H2 - аппроксимирующих функций нулевого и второго порядка, вывести формулы, позволяющие реализовать алгоритм КМГЭ, решить ряд тестовых задач, для которых уже найдено точное аналитическое решение, с целью апробации метода, кроме того, следует вычислить погрешность, получаемую в процессе решения.

Актуальность работы заключается в том, что задачи о поведении идеальных жидкостей со свободной поверхностью носят фундаментальный характер и изучены очень мало, несмотря на пристальный интерес к ним исследователей со всего мира.

Научная новизна работы заключается в следующем:

1. Разработке и тестировании алгоритма реализации комплексного метода граничных элементов для задач в плоской постановке, в частности для колебания цилиндрического объёма жидкости, под действием сил поверхностного натяжения в плоской постановке.

2. Осуществлении вклада в изучение методики решения задач теории потенциала, в частности для задач гидродинамики, рассматривающих проблемы течений идеальной жидкости со свободной поверхностью.

3. Оценке потенциальных возможностей комплексного метода граничных элементов для решения задач такого рода.

Практическая ценность работ, посвященных исследованию процесса колебания капель, обусловлена широкими возможностями использования полученных результатов [8] применительно к технологии спекания в порошковой металлургии, метеорологии.
400 руб.

Похожие работы:

Определить изменение энтропии при изотермическом расширении 10 г кислорода от объема V1 = 25 литров до объема V2 = 100 литров. (мю=32*10^-3 кг/моль, R=8.3 

Определить изменение энтропии при изотермическом расширении 10 г кислорода от объема V1 = 25 литров до объема V2 = ...

Блок, имеющий форму диска массой m=0,4 кг вращается под действием силы натяжения нити, к концам которой подвешены грузы массами m1=0,3 кг и m2=0,7 кг. Опре 

Блок, имеющий форму диска массой m=0,4 кг вращается под действием силы натяжения нити, к концам которой подвешены ...

Поиск по базе выполненных нами работ: