ГлавнаяГотовые работы СИСТЕМА ЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ И РЕШЕНИЕ ЗАДАЧ

Готовый реферат

на тему:

«СИСТЕМА ЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ И РЕШЕНИЕ ЗАДАЧ»









Цена: 750 руб.

Номер: V8729

Предмет: Математика

Год: 2008

Тип: рефераты

Отзывы

Айжамал 26.08.2020
Вас беспокоит автор статьи Айжамал из Кыргызстана,  моя статья опубликована, и в этом ваша заслуга. Огромная благодарность Вам за оказанные услуги.
Татьяна М. 12.06.2020
Спасибо Вам за сотрудничество! Я ВКР защитила на 5 (пять). Огромное спасибо Вам и Вашей команде Курсовой проект.
Юлианна В. 09.04.2018
Мы стали Магистрами)))
Николай А. 01.03.2018
Мария,добрый день! Спасибо большое. Защитился на 4!всего доброго
Инна М. 14.03.2018
Добрый день,хочу выразить слова благодарности Вашей и организации и тайному исполнителю моей работы.Я сегодня защитилась на 4!!!! Отзыв на сайт обязательно прикреплю,друзьям и знакомым  буду Вас рекомендовать. Успехов Вам!!!
Ольга С. 09.02.2018
Курсовая на "5"! Спасибо огромное!!!
После новогодних праздников буду снова Вам писать, заказывать дипломную работу.
Ксения 16.01.2018
Спасибо большое!!! Очень приятно с Вами сотрудничать!
Ольга 14.01.2018
Светлана, добрый день! Хочу сказать Вам и Вашим сотрудникам огромное спасибо за курсовую работу!!! оценили на \5\!))
Буду еще к Вам обращаться!!
СПАСИБО!!!
Вера 07.03.18
Защита прошла на отлично. Спасибо большое :)
Яна 06.10.2017
Большое спасибо Вам и автору!!! Это именно то, что нужно!!!!!
Спасибо, что ВЫ есть!!!

Поделиться

Введение
Содержание
Литература
3. Формулы Крамера

Метод Крамера состоит в том, что мы последовательно находим главный определитель системы (3), т.е. определитель матрицы А

D = det (ai j)

и n вспомогательных определителей D i (i= ), которые получаются из определителя D заменой i-го столбца столбцом свободных членов.

Формулы Крамера имеют вид:

D × x i = D i ( i = ). (4)

Из (4) следует правило Крамера, которое дает исчерпывающий ответ на вопрос о совместности системы (3): если главный определитель системы отличен от нуля, то система имеет единственное решение, определяемое по формулам:

x i = D i / D.

Если главный определитель системы D и все вспомогательные определители D i = 0 (i= ), то система имеет бесчисленное множество решений. Если главный определитель системы D = 0, а хотя бы один вспомогательный определитель отличен от нуля, то система несовместна.

Пример 4. Решить методом Крамера систему уравнений:

x1 + x2 + x3 + x4 = 5,

x1 + 2x2 - x3 + 4x4 = -2,

2x1 - 3x2 - x3 - 5x4 = -2,

3x1 + x2 +2x3 + 11 x4 = 0.

Решение. Главный определитель этой системы
750 руб.

Похожие работы:

МЕСТО И РОЛЬ ФОНДОВОГО РЫНКА В РЫНОЧНОЙ ЭКОНОМИКЕ. СИСТЕМА СТРАХОВАНИЯ В РФ. 

1.МЕСТО И РОЛЬ ФОНДОВОГО РЫНКА В РЫНОЧНОЙ ЭКОНОМИКЕ

1.1. Понятие, цели, задачи и функции фондового рынка
Фондовый ...

РАЗВИТИЕ МАЛОГО БИЗНЕСА В РОССИЙСКОЙ ФЕДЕРАЦИИ.СУЩЕСТВУЮЩАЯ СИСТЕМА МАЛОГО БИЗНЕСА. 

ВВЕДЕНИЕ

Опыт развитых стран показывает, что малый бизнес играет весьма и весь-ма большую роль в экономике, ...

КРЕДИТНАЯ СИСТЕМА РФ И ЕЕ ЗВЕНЬЯ 

ВВЕДЕНИЕ
Проводимая в стране радикальная экономическая реформа открыла новый этап в развитии кредитной системы. ...

СИСТЕМА ПОКАЗАТЕЛЕЙ ДЕЯТЕЛЬНОСТИ ПРЕДПРИЯТИЯ КАК ОБЪЕКТ АНАЛИЗА 

1. Общая характеристика системы показателей деятельности предприятия
Ключевой целью анализа хозяйственной ...

ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 

Краткие теоретические сведения

Численное решение нелинейного уравнения f(x)=0 заключается в вычислении ...

Поиск по базе выполненных нами работ: