Готовая курсовая работа
на тему:«Численные методы»
Цена: 1,200 руб.
Номер: V2973
Предмет: Информатика
Год: 2007
Тип: курсовые
Отзывы
После новогодних праздников буду снова Вам писать, заказывать дипломную работу.
Буду еще к Вам обращаться!!
СПАСИБО!!!
Спасибо, что ВЫ есть!!!
1.1. Метод наименьших квадратов
Линейная регрессия (теоретическое линейное уравнение регрессии) представляет собой линейную функцию между условным математическим ожиданием зависимой переменной Y и одной объ¬ясняющей переменной X ( – значения независимой перемен¬ной в i-ом наблюдении, ).
. (1.1)
Для отражения того факта, что каждое индивидуальное значение отклоняется от соответствующего условного мате¬матического ожидания, необходимо ввести в последнее соотношение случайное слагаемое .
(1.1)
Это соотношение называется теоретической линейной регрессионной моделью, и – теоретическими парамет¬рами (теоретическими коэффициентами) регрессии, – слу¬чайным отклонением.
Следовательно, индивидуальные значения представляют¬ся в виде суммы двух компонент – систематической и случайной , причина появления которой достаточно под¬робно рассмотрена ранее. В общем виде теоретическую линейную регрессионную модель будем представлять в виде:
. (1.2)
Для определения значений теоретических коэффициентов регрессии необходимо знать и использовать все значения пере¬менных X и Y генеральной совокупности, что практически не¬возможно.
Таким образом, задачи линейного регрессионного анализа состоят в том, чтобы по имеющимся статистическим данным для переменных X и Y:
а) получить наилучшие оценки неизвестных параметров и ;
б) проверить статистические гипотезы о параметрах модели;
в) проверить, достаточно ли хорошо модель согласуется со статистическими данными (адекватность модели данным на¬блюдений).
Следовательно, по выборке ограниченного объема мы смо¬жем построить так называемое эмпирическое уравнение рег¬рессии
(1.3)
где – оценка условного математического ожидания ; и – оценки неизвестных параметров и , называе¬мые эмпирическими коэффициентами регрессии. Следователь¬но, в конкретном случае:
(1.4)
где отклонение – оценка теоретического случайного откло¬нения .
Параметры уравнения и находят методом наименьших квадратов (метод решения систем уравнений, при котором в качестве решения принимается точка минимума суммы квадратов отклонений), то есть в основу этого метода положено требование минимальности сумм квадратов отклонений эмпирических данных от выравненных :
. (1.5)
Эта функция является квадратичной функцией двух параметров и . Условием существования минимума функции двух переменных является равенство нулю ее частных производных:
Разделив оба уравнения системы на n, получим:
,
где (1.6)
1.2. Метод итерации.
Дана непрерывная функция f(x), которая содержит единственный корень на отрезке [a,b], где b>a. Определить корень с точностью ε.
Суть метода
Дано f(x)=0 (1)
Заменим уравнение (1) равносильным уравнением
x=φ(x) (2)
Выберем грубое, приближенное значение x0 , принадлежащее[a,b], подставим его в правую часть уравнения (2), получим:
x1= φ(x0) (3)
далее подставим х1 в правую часть уравнения (3) получим:
x2= φ(x1) (4)
x3= φ(x2) (5)
Проделаем данный процесс n раз получим xn=φ(xn-1)
Если эта последовательность является сходящейся т.е. существует предел
x* =lim xn , то данный алгоритм позволяет определить искомый корень.
Выражение (5) запишем как
x*= φ(x*) (6)
Выражение (6) является решением выражения (2), теперь необходимо рассмотреть в каких случаях последовательность х1…хn является сходящейся.
Условием сходимости является если во всех токах x принадлежит [a,b] выполняется условие:
Похожие работы:
Методика преподавания психологии: активные методы обучения (методы интерактивного обучения) ➨
Профессиональная подготовка будущих специалистов не может ограничиваться только овладением специальными знаниями, ...
Методика преподавания психологии: активные методы обучения (методы проблемного обучения) ➨
Современный мир характеризуется усилением конкуренции, что ведет к изменению требований к подготовке выпускников ...
Численные методы 4 контрольных работы ➨
Контрольная работа №1
1. Метод хорд. Дайте геометрическую интерпретацию метода хорд.
Пусть требуется вычислить ...
Численные методы контрольная ➨
23. Вычислить по формуле Симпсона определенный интеграл функции f(x) с шагом ... Расчеты производить с точностью ...