ГлавнаяГотовые работы Численные методы

Готовая курсовая работа

на тему:

«Численные методы»









Цена: 1,200 руб.

Номер: V2973

Предмет: Информатика

Год: 2007

Тип: курсовые

Отзывы

Айжамал 26.08.2020
Вас беспокоит автор статьи Айжамал из Кыргызстана,  моя статья опубликована, и в этом ваша заслуга. Огромная благодарность Вам за оказанные услуги.
Татьяна М. 12.06.2020
Спасибо Вам за сотрудничество! Я ВКР защитила на 5 (пять). Огромное спасибо Вам и Вашей команде Курсовой проект.
Юлианна В. 09.04.2018
Мы стали Магистрами)))
Николай А. 01.03.2018
Мария,добрый день! Спасибо большое. Защитился на 4!всего доброго
Инна М. 14.03.2018
Добрый день,хочу выразить слова благодарности Вашей и организации и тайному исполнителю моей работы.Я сегодня защитилась на 4!!!! Отзыв на сайт обязательно прикреплю,друзьям и знакомым  буду Вас рекомендовать. Успехов Вам!!!
Ольга С. 09.02.2018
Курсовая на "5"! Спасибо огромное!!!
После новогодних праздников буду снова Вам писать, заказывать дипломную работу.
Ксения 16.01.2018
Спасибо большое!!! Очень приятно с Вами сотрудничать!
Ольга 14.01.2018
Светлана, добрый день! Хочу сказать Вам и Вашим сотрудникам огромное спасибо за курсовую работу!!! оценили на \5\!))
Буду еще к Вам обращаться!!
СПАСИБО!!!
Вера 07.03.18
Защита прошла на отлично. Спасибо большое :)
Яна 06.10.2017
Большое спасибо Вам и автору!!! Это именно то, что нужно!!!!!
Спасибо, что ВЫ есть!!!

Поделиться

Введение
Содержание
Литература
І. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ.
1.1. Метод наименьших квадратов
Линейная регрессия (теоретическое линейное уравнение регрессии) представляет собой линейную функцию между условным математическим ожиданием зависимой переменной Y и одной объ¬ясняющей переменной X ( – значения независимой перемен¬ной в i-ом наблюдении, ).
. (1.1)
Для отражения того факта, что каждое индивидуальное значение отклоняется от соответствующего условного мате¬матического ожидания, необходимо ввести в последнее соотношение случайное слагаемое .
(1.1)
Это соотношение называется теоретической линейной регрессионной моделью, и – теоретическими парамет¬рами (теоретическими коэффициентами) регрессии, – слу¬чайным отклонением.
Следовательно, индивидуальные значения представляют¬ся в виде суммы двух компонент – систематической и случайной , причина появления которой достаточно под¬робно рассмотрена ранее. В общем виде теоретическую линейную регрессионную модель будем представлять в виде:
. (1.2)
Для определения значений теоретических коэффициентов регрессии необходимо знать и использовать все значения пере¬менных X и Y генеральной совокупности, что практически не¬возможно.
Таким образом, задачи линейного регрессионного анализа состоят в том, чтобы по имеющимся статистическим данным для переменных X и Y:
а) получить наилучшие оценки неизвестных параметров и ;
б) проверить статистические гипотезы о параметрах модели;
в) проверить, достаточно ли хорошо модель согласуется со статистическими данными (адекватность модели данным на¬блюдений).
Следовательно, по выборке ограниченного объема мы смо¬жем построить так называемое эмпирическое уравнение рег¬рессии
(1.3)
где – оценка условного математического ожидания ; и – оценки неизвестных параметров и , называе¬мые эмпирическими коэффициентами регрессии. Следователь¬но, в конкретном случае:
(1.4)
где отклонение – оценка теоретического случайного откло¬нения .

Параметры уравнения и находят методом наименьших квадратов (метод решения систем уравнений, при котором в качестве решения принимается точка минимума суммы квадратов отклонений), то есть в основу этого метода положено требование минимальности сумм квадратов отклонений эмпирических данных от выравненных :
. (1.5)
Эта функция является квадратичной функцией двух параметров и . Условием существования минимума функции двух переменных является равенство нулю ее частных производных:

Разделив оба уравнения системы на n, получим:
,
где (1.6)
1.2. Метод итерации.
Дана непрерывная функция f(x), которая содержит единственный корень на отрезке [a,b], где b>a. Определить корень с точностью ε.
Суть метода
Дано f(x)=0 (1)
Заменим уравнение (1) равносильным уравнением
x=φ(x) (2)
Выберем грубое, приближенное значение x0 , принадлежащее[a,b], подставим его в правую часть уравнения (2), получим:
x1= φ(x0) (3)
далее подставим х1 в правую часть уравнения (3) получим:
x2= φ(x1) (4)
x3= φ(x2) (5)
Проделаем данный процесс n раз получим xn=φ(xn-1)
Если эта последовательность является сходящейся т.е. существует предел
x* =lim xn , то данный алгоритм позволяет определить искомый корень.
Выражение (5) запишем как
x*= φ(x*) (6)
Выражение (6) является решением выражения (2), теперь необходимо рассмотреть в каких случаях последовательность х1…хn является сходящейся.
Условием сходимости является если во всех токах x принадлежит [a,b] выполняется условие:
1,200 руб.

Похожие работы:

Методика преподавания психологии: активные методы обучения (методы интерактивного обучения) 

Профессиональная подготовка будущих специалистов не может ограничиваться только овладением специальными знаниями, ...

Методика преподавания психологии: активные методы обучения (методы проблемного обучения) 

Современный мир характеризуется усилением конкуренции, что ведет к изменению требований к подготовке выпускников ...

Численные методы 4 контрольных работы 

Контрольная работа №1
1. Метод хорд. Дайте геометрическую интерпретацию метода хорд.
Пусть требуется вычислить ...

Численные методы контрольная 

23. Вычислить по формуле Симпсона определенный интеграл функции f(x) с шагом ... Расчеты производить с точностью ...

Поиск по базе выполненных нами работ: