Готовый реферат
на тему:«Несобственные интегралы»
Цена: 750 руб.
Номер: V4409
Предмет: Математика
Год: 2007
Тип: рефераты
Отзывы
После новогодних праздников буду снова Вам писать, заказывать дипломную работу.
Буду еще к Вам обращаться!!
СПАСИБО!!!
Спасибо, что ВЫ есть!!!
При введении понятия определенного интеграла вида предполагалось, что выполняются следующие условия:
1. пределы интегрирования и являются конечными;
2. подынтегральная функция ограничена на отрезке .
В данном случае определенный интеграл называется собственным.
Другими словами, определенный интеграл был введен для ограниченных на отрезке функций.
Естественно распространить это понятие на случай бесконечных промежутков и бесконечно больших функций.
Если хотя бы одно из условий 1.- 2. не выполняется, то интеграл называется несобственным.
В данной работе рассмотрим несобственные интегралы по неограниченному промежутку и от неограниченной функции и методы исследования их на сходимость.
1. Несобственные интегралы первого и второго рода. Критерии Коши сходимости несобственного интеграла
1.1 Несобственные интегралы первого рода
Пусть функция непрерывна при любом . Рассмотрим интеграл с переменным верхним пределом:
(1.1)
Предположим, что при функция (1.1) имеет конечный предел, этот предел называется сходящимся несобственным интегралом от функции по промежутку и обозначается так:
(1.2)
Если предел (1.2) не существует или равен бесконечности, то несобственный интеграл называется расходящимся.
Геометрически интеграл от неотрицательной функции выражает площадь бесконечной криволинейной трапеции, ограниченной сверху графиком функции , слева – отрезком прямой , снизу – осью (рис.1); в случае сходящегося интеграла эта площадь является конечной, в случае расходящегося – бесконечной.
Рис.1
Если первообразная для , то
, где .
Аналогично определяется несобственный интеграл с бесконечным нижним пределом
и несобственный интеграл с обоими бесконечными пределами
,
где любая точка из интервала .
Несобственные интегралы второго рода
Если функция неограниченна в окрестности точки отрезка и непрерывна при и , то несобственный интеграл от этой функции определяется формулой
, (1.3)
где .
В случае или получаем
(1.4)
(1.5)
Несобственные интегралы (1.4) и (1.5) называются сходящимися, если существует конечный предел соответствующего определенного интеграла; в противном случае интегралы называются расходящимися.
Несобственный интеграл (1.3) называется сходящимся, если существуют оба предела в правой части.
Геометрически вычисление несобственного интеграла второго рода представляет собою (при ) исчерпание площади неограниченной фигуры под графиком функции над с помощью вычисления плошадей ограниченных фигур, получающихся над отрезком , а затем приближением правого конца к точке (см. рис.).
1.3 Критерии Коши сходимости несобственного интеграла
Для несобственного интеграла второго рода:
1). Пусть функция определена на промежутке ) , причем существует собственный интеграл , тогда:
интеграл сходится тогда и только тогда, когда выполняется условие: : .
Для несобственного интеграла второго рода:
2). Пусть функция определена на полуинтервале ), причем существует собственный интеграл , тогда
интеграл сходится тогда и только тогда, когда выполняется условие
2. Абсолютно и условно сходящиеся несобственные интегралы
Рассмотрим несобственные интегралы:
( ) (2.1)
( ) (2.2)
Если несобственный интеграл (2.1) сходится, то несобственный интеграл (2.2 )называется абсолютно сходящимся.
Если несобственный интеграл (2.1) расходится, а несобственный интеграл (2.2) сходится, то несобственный интеграл (2.2) называется условно сходящимся.
Похожие работы:
При введении понятия определенного интеграла вида предполагалось, что выполняются следующие условия:
1. пределы ...
Контрольная работа по высшей математике (интегралы в Mathcad). ➨
Исправим текстовые поля в файле Mathcad, выбирая вместо западного типа шрифта кириллический тип шрифта в поле Format ...
Контрольная работа по высшей математике (неопределенные интегралы). ➨
.
Применили метод интегрирования по частям.
7.
Применили метод интегрирования ...
Контрольная работа по высшей математике (интегралы). ➨
5. Найти интервал сходимости степенного ряда:
Решение.
Используем формулу радиуса сходимости.
...
Определение 1. Говорят, что в области имеется силовое поле, если на каждую материальную точку, помещенную в область ...