ГлавнаяГотовые работы 1. Несобственные интегралы первого и второго рода. Критерии Коши сходимости несобственного интеграла. 2. Абсолютно и условно сходящиеся несобственные интег

Готовый реферат

на тему:

«1. Несобственные интегралы первого и второго рода. Критерии Коши сходимости несобственного интеграла. 2. Абсолютно и условно сходящиеся несобственные интег»









Цена: 750 руб.

Номер: V3419

Предмет: Математика

Год: 2007

Тип: рефераты

Отзывы

Айжамал 26.08.2020
Вас беспокоит автор статьи Айжамал из Кыргызстана,  моя статья опубликована, и в этом ваша заслуга. Огромная благодарность Вам за оказанные услуги.
Татьяна М. 12.06.2020
Спасибо Вам за сотрудничество! Я ВКР защитила на 5 (пять). Огромное спасибо Вам и Вашей команде Курсовой проект.
Юлианна В. 09.04.2018
Мы стали Магистрами)))
Николай А. 01.03.2018
Мария,добрый день! Спасибо большое. Защитился на 4!всего доброго
Инна М. 14.03.2018
Добрый день,хочу выразить слова благодарности Вашей и организации и тайному исполнителю моей работы.Я сегодня защитилась на 4!!!! Отзыв на сайт обязательно прикреплю,друзьям и знакомым  буду Вас рекомендовать. Успехов Вам!!!
Ольга С. 09.02.2018
Курсовая на "5"! Спасибо огромное!!!
После новогодних праздников буду снова Вам писать, заказывать дипломную работу.
Ксения 16.01.2018
Спасибо большое!!! Очень приятно с Вами сотрудничать!
Ольга 14.01.2018
Светлана, добрый день! Хочу сказать Вам и Вашим сотрудникам огромное спасибо за курсовую работу!!! оценили на \5\!))
Буду еще к Вам обращаться!!
СПАСИБО!!!
Вера 07.03.18
Защита прошла на отлично. Спасибо большое :)
Яна 06.10.2017
Большое спасибо Вам и автору!!! Это именно то, что нужно!!!!!
Спасибо, что ВЫ есть!!!

Поделиться

Введение
Содержание
Литература
При введении понятия определенного интеграла вида предполагалось, что выполняются следующие условия:

1. пределы интегрирования и являются конечными;

2. подынтегральная функция ограничена на отрезке .

В данном случае определенный интеграл называется собственным.

Другими словами, определенный интеграл был введен для ограниченных на отрезке функций.

Естественно распространить это понятие на случай бесконечных промежутков и бесконечно больших функций.

Если хотя бы одно из условий 1.- 2. не выполняется, то интеграл называется несобственным.

В данной работе рассмотрим несобственные интегралы по неограниченному промежутку и от неограниченной функции и методы исследования их на сходимость.

Найдем условия сходимости и расходимости несобственного интеграла



Подынтегральная функция терпит бесконечный разрыв при .



Таким образом:

a) если , то

b) если то .

Если , то .

Вывод: данный интеграл сходится при и расходится при .

Пример 2.

Исследовать при каких значениях сходится несобственный интеграл

.

Если , то



Следовательно, если , то несобственный интеграл расходится.

Если то



Этот предел будет бесконечным при или ; он будет равен постоянной при или . Итак данный интеграл сходится при

Пример 3.

Исследовать при каких значениях сходится несобственный интеграл

.

Находим .

Данный предел будет бесконечным при или ; он будет равен при или .

Если , то , следовательно, при интеграл расходится.
750 руб.

Похожие работы:

В одноступенчатом компрессоре сжимается адиабатно двуокись углерода до р2=0,5МПа. Начальная температура двуокиси углерода t1=-5C и давление р1=0,1МПа. Опр 

В одноступенчатом компрессоре сжимается адиабатно двуокись углерода до р2=0,5МПа. Начальная температура двуокиси ...

Несобственные интегралы 

Введение
При введении понятия определенного интеграла вида предполагалось, что выполняются следующие условия:
1. пределы ...

Поиск по базе выполненных нами работ: