ГлавнаяГотовые работы Сравнение эффективности приближенных методов решения трансцендентных уравнений (методом касательных и секущих). Погрешность. Геометрическое содержание.

Готовая курсовая работа

на тему:

«Сравнение эффективности приближенных методов решения трансцендентных уравнений (методом касательных и секущих). Погрешность. Геометрическое содержание.»









Цена: 1,200 руб.

Номер: V7562

Предмет: Программирование

Год: 2007

Тип: курсовые

Отзывы

Айжамал 26.08.2020
Вас беспокоит автор статьи Айжамал из Кыргызстана,  моя статья опубликована, и в этом ваша заслуга. Огромная благодарность Вам за оказанные услуги.
Татьяна М. 12.06.2020
Спасибо Вам за сотрудничество! Я ВКР защитила на 5 (пять). Огромное спасибо Вам и Вашей команде Курсовой проект.
Юлианна В. 09.04.2018
Мы стали Магистрами)))
Николай А. 01.03.2018
Мария,добрый день! Спасибо большое. Защитился на 4!всего доброго
Инна М. 14.03.2018
Добрый день,хочу выразить слова благодарности Вашей и организации и тайному исполнителю моей работы.Я сегодня защитилась на 4!!!! Отзыв на сайт обязательно прикреплю,друзьям и знакомым  буду Вас рекомендовать. Успехов Вам!!!
Ольга С. 09.02.2018
Курсовая на "5"! Спасибо огромное!!!
После новогодних праздников буду снова Вам писать, заказывать дипломную работу.
Ксения 16.01.2018
Спасибо большое!!! Очень приятно с Вами сотрудничать!
Ольга 14.01.2018
Светлана, добрый день! Хочу сказать Вам и Вашим сотрудникам огромное спасибо за курсовую работу!!! оценили на \5\!))
Буду еще к Вам обращаться!!
СПАСИБО!!!
Вера 07.03.18
Защита прошла на отлично. Спасибо большое :)
Яна 06.10.2017
Большое спасибо Вам и автору!!! Это именно то, что нужно!!!!!
Спасибо, что ВЫ есть!!!

Поделиться

Введение
Содержание
Литература
Теоретическая часть

Постановка задачи решения трансцендентных уравнений



Пусть имеется нелинейное (в частном случае – трансцендентное) уравнение f(x)=0. Корнем данного уравнения называется значение , при котором . Решение уравнения заключается в нахождение его корней.

Корень называется простым, если . Корень называется кратным, если . Целое число m называется кратностью корня , если для k=1,2,3...(m-1), а . Случай k=1 соответствует простому корню.

Рассмотрим график некоторой функции y=f(x) (x[a,b]), который представлен на рис.1. Из определения следует, что корень является простым, если график функции y=f(x) пересекает ось 0x в точке под yглом 0 , и кратным, если он касается оси 0x в точке , т.к. имеем =0.

Все методы решения нелинейных уравнений можно разделить на аналитические, графические и численные. Аналитическими методами удается воспользоваться только для уравнений определенного вида, в общем случае они не применимы. Графические методы обладают большой погрешностью. Поэтому основными являются численные методы.

Численное решение задачи нахождения корней нелинейного уравнения проводится в два этапа: этапа локализации корней и этапа итерационного уточнения корней.

На этапе локализации выделяется отрезок, содержащий только один корень, при этом длину этого отрезка стараются сделать как можно меньше. Поэтому предварительно проводится исследование уравнения, т.е. определяется существование корней уравнения, сколько их и как они расположены на числовой оси.

При локализации используются различные методы: аналитические, графические, таблицы. Аналитические и графические методы применяются для простых уравнений, например, для уравнения: . Для более сложных уравнений строятся таблицы и определяются значения xi и xl+i, при которых функция y=f(x) меняет знак (поиск простых корней), или производные меняют знак (поиск кратных корней). Отсюда сразу можно сделать вывод, что задача нахождения простых корней существенно проще, чем задача отыскания кратных корней

На этапе итерационного уточнения корней по одному и тому же алгоритму вычисляется последовательность значений x0, x1,..., xn , при этом для определения последующих значений этой последовательности используются предыдущие значения. Поэтому в самом начале, для вычисления значения x1, необходимо задать значение x0, которое называется начальным приближением. Соответственно вычисленное значение x1 называется первым приближением и т.д.

В основе вычислительного алгоритма лежит итерационная формула (название происходит от латинского слова “iteracio” - повторение). Для нахождения корня с точностью  используется та или иная итерационная формула, которая определяется применяемым методом решения Итерационный метод называется одношаговым, если для вычисления очередного приближения xn используется только xn-1 приближение, и k - шаговым если используются k предыдущих приближений: xn-1,xn-2,...,xn-k.



Критерий сходимости. Для сходимости итерационного процесса необходимо и достаточно выполнение следующего условия

(1.1)

где c и p - некоторые константы, число p называется порядком сходимости метода.

При p=1 и с 1, то имеем сверх линейную сходимость, если p=2, то сходимость метода - квадратичная. Если для всех n выполняется условие: , где q
1,200 руб.

Похожие работы:

Теоретическое обоснование и практическое применение методов оценки эффективности инвестиционного проекта с точки зрения банка. 

Введение Актуальность темы исследования обусловлена тем, что в результате развития рыночных отношений ...

Понятие и содержание эффективности 

3. Методология измерения и оценки эффективности менеджмента.

Анализ и оценка эффективности всех организаций ...

Практическое освоение методов решения задач по комбинаторике и теории вероятностей 

Задача 1. Сколькими способами можно разбить один рубль на монеты достоинством в 1,2,5,10,20,50 копеек?
Задача 2. На складе ...

Применение новейших экономико-математических методов для решения задач 

Предисловие

В данной курсовой работе, целью которой является изучить и научиться пользоваться важной составной ...

Поиск по базе выполненных нами работ: